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Abstract. The discrete cubic model for six states of the lattice variables is investigated at 
one special point of the phase diagram where a number of contradicting results are known 
concerning the order of the phase transition and the critical exponents. A new implementa- 
tion of the MCRG method is used for determining the critical point with great accuracy 
and for calculating the critical exponents. A continuous phase transition is found. 

Following the recent results for six-state self-dual quantum chains with cubic symmetry 
where for a special point superconformal invariance is discovered, the critical exponents 
obtained are explained in the framework of this theory indicating a superconformal point 
with a conformal anomaly of c = 1.25. 

1. Introduction 

The cubic model (Aharony 1977, Kim et al 1975) is a generalisation of the widely 
known Ashkin-Teller model (Ashkin and Teller 1943) which is well understood (Ditzian 
et a1 1980). The model exhibits a rich phase structure and has resisted an analytic 
solution so far. But from the analytical as well as from the numerical point of view 
there is a growing interest in the model. 

The phase structure of the cubic model with six states for the lattice variables is 
roughly known. But the results of the various investigations with different methods 
disagree on the point of the order of the phase transitions. In a mean-field calculation 
Kim et al found a second-order phase transition (Kim et al 1975) and by applying 
the Bethe-Peierls-Weiss approximation Kim and Levy got a first-order transition (Kim 
and Levy 1975). The result of Nienhuis et al who performed an intensive study using 
a variational renormalisation group technique was again a first-order transition. A 
Monte Carlo calculation with a finite-size scaling analysis showed a second-order 
transition (Badke et a1 (1985a, b). The various contradicting results strongly motivate 
a new consideration of the model. 

Another motivation comes from the formulation of the cubic model with six states 
as a finite quantum chain. Applying the theory of conformal invariance to a self-dual 
quantum chain with cubic symmetry von Gehlen and Rittenberg (1986) found a 
second-order phase transition and a plateau in the space of coupling constants where 
the corresponding conformal anomaly is constant with a value of about c = 1.25. For 
one of their points they discovered an additional N = 1 supersymmetry (von Gehlen 
and Rittenberg 1987). For another point of the general six-state model without cubic 
symmetry Zamolodchikov and Fateev (1985) suggested a conformal anomaly of c = 1.25 
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using a larger algebra. For this point their conjectures are confirmed by a recent 
finite-size scaling investigation of Alcaraz (1986). 

I present here a Monte Carlo renormalisation group ( M C R G )  study of the cubic 
model in the Lagrange formulation. Because of the known differences between the 
Lagrange and  the Hamilton formulation it is interesting to test whether one can find 
results which can also be explained within the framework of superconformal invariance 
in the Lagrange formulation. Because of the enormous amount of computer resources 
which are required by the simulations in the Lagrange formulation I shall specialise 
in this paper to the critical point in the phase transition of the cubic model where 
most numeric results are available. The MCRG method is chosen for two reasons. 
Firstly it provides the possibility of calculating higher exponents in a simple manner. 
Secondly this model provides the possibility of applying new techniques in the 
implementation of the MCRG method. With the calculation of effective renormalised 
coupling constants (Swendsen 1984a, b, Gupta and Cordery 1984) one can approach 
the fixed point in a systematic way (Badke 1987) and use a new extrapolation procedure. 

From the various experimental realisations of the discrete cubic model I want to 
mention only the application in the absorption on monolayers (Schick 1983), because 
these are two-dimensional effects and all calculations presented in this paper are also 
performed in two dimensions. The discrete cubic model can be used to describe the 
orientational ordering of diatomic molecules on a triangular lattice (Harris and Ber- 
linsky 1979). Such a behaviour is observed in the absorption of N2 molecules on a 
graphite surface (Chang and Dash 1977, Eckert er al 1979, Diehl er a /  1983). Also 
the magnetic ordering of planar spins on a triangular lattice can be explained with the 
help of the cubic model (Domany and Riedel 1978). 

The paper is organised as follows. In  § 2 I shall present the model and show its 
place in the classification of a general Hamiltonian. This will demonstrate the connec- 
tion with previously studied models. Also special cases and known results are presented. 
The predictions of the theory of conformal invariance are given in (3 3. Section 4 briefly 
describes the numerical method used in this paper. As a first physicai result the 
calculation of the critical point obtained by following RG trajectories is presented in 
§ 5. In 8 6 the critical exponents are derived and compared with the predictions of 
9 3. Finally § 7 contains my conclusions. 

2. The cubic model 

In this section the cubic model is described as a special case of a general Hamiltonian 
and known results of the model are presented. Let me start the classification with the 
most general Hamiltonian which has at least 9, symmetry (2, = %2023): 

where the lattice variables cy, and p, of the lattice site i can have the following values: 

cy, E (0, 1) and PI E (0, 1 , 2 )  

and the interaction is composed of the multiplication of an  Ising term ( - l ) "Au with 
n E Z2 and a cubic term umAP with m E 5Y3 where w = exp(2r i /3) .  The classification 
of the higher symmetries of the Hamiltonian in equation (1) which appear if some 
relations between the coupling constants an,,, are fulfilled has been done by Marcu er 
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a1 (1981). The results are shown in table 1 .  There Z N  denotes the cyclic group and 
analogue YN, the permutation group of N elements. The symbol 31% represents the 
wreath product and the symbol 363% the direct product of the groups '3 and 2. 
Furthermore in the following a system is called a 3 model if it is invariant under a 
certain finite group 3. 

From the models in table 1 the Y6 model corresponds to the Potts model for q = 6 
(Potts 1952). The Y 2 0 Y 3  model has been studied by Domany and Riedel (1979) and 
therefore it is known as the Domany-Riedel model. It contains as a special case the 
vector Potts model. 

In this paper I shall concentrate on the T2lY3 model. Introducing the coupling 
constants C, = ao,, = uo,2 and C2 = = = a l . ,  and using the identities 

1 + ( - l ) e = 2 6 ( a )  for a ~ { O , 1 }  

and 

1 +exp(f.nip)+exp(jrrip) = 36(p) for p E { 0 , 1 , 2 }  

the Hamiltonian of the discrete cubic model can be written like 

-H = C C,(36(Ap) - 1 ) +  C23S(AP)(2S(Aa) - 1 ) .  
( I d  

This Hamiltonian includes as special cases the Ising model ( C ,  + a), the Potts model 
for q = 3 (C, = 0), the Potts model for q = 6 ( C, = C,) and the cubic model in the form 
in which it has been initially defined by Kim et a1 (1975) (C,  = 0). For the following 
I shall restrict myself to ferromagnetic interactions. In figure 1 the phase diagram is 
presented for the model given by the Hamiltonian in equation ( 2 ) .  It shows three 
different phases. 

(i) The ordered (ferromagnetic) phase ( C2 large enough). All the lattice variables 
are fixed. 

(ii) The partial ordered phase ( Cz small and C, large). Only the pi are fixed. There 
is no constraint for the a,. 

(iii) The non-ordered (paramagnetic) phase (C, , C2 small). None of the variables 
is fixed. 

Table 1. Classification of the general Hamiltonian with at least Zih symmetry into higher 
symmetries and the corresponding relations between the coupling constants. 

Relation between the 
Global symmetry Order of the group coupling constants 



Ordered 
phase , 

I 
0 Potts (9.3) CO 

Cl 

Figure 1. Phase diagram of the discrete cubic model with T 2 / Y 3  symmetry in the plane 
of the coupling constants C, and C,. There are three different phases: the ordered phase, 
the partial ordered phase and the non-ordered phase. The phase transitions between the 
different phases are indicated by the full curves. Exactly known critical points which 
correspond to a certain choice of the coupling constants C, and C2 are marked by the 
symbol ra and labelled by the name of the models they belong to. The broken line (C, = C,) 
is drawn to guide the eye. 

The order of the phase transition and the critical exponents are only known for the 
special points which have already been mentioned. For the Ising case and the Potts 
case there are second-order phase transitions with critical exponents ( a = 0, 7) = i) and 
( a  = 4, 7 = A )  respectively. It is believed that the critical lines starting at these phase 
transition points meet somewhere before the third known point, the first-order phase 
transition of the Potts(6) model, is reached. The nature of the cubic transition between 
the ordered and the non-ordered phase is still the subject of intensive investigations. 
There are controversial contributions to this problem: Kim er a1 found a second-order 
phase transition in a mean-field calculation (Kim et a1 1975) and a phase transition 
of first order using the Bethe-Peierls-Weiss approximation (Kim and Levy 1975). 
These calculations are both done for the case C, = 0. Nienhuis et a1 who applied a 
variational RG technique (Nienhuis er al 1983) published the result that the complete 
critical line of the cubic transition from C, = 0 to C, = C2 is of first order. On the other 
hand we found a second-order phase transition (with v = i )  (Badke er al 1985a) for 
the cases C, = 0 and C, = 0.1, C2 = 0.29 in a Monte Carlo simulation combined with 
a finite-size scaling study (Barber 1983). Also in the Hamilton formulation of the 
model which will be introduced in the next section, the results are controversial. In 
this paper the results of a MCRG investigation of the model starting at the ‘unknown’ 
boundary of the phase diagram (C, = 0) are presented. 

3. Predictions from conformal invariance 

Recently the theory of conformal invariance has become an important tool in the 
classification of the universal critical behaviour in two dimensions. Based on the 
assumption that there is conformal invariance additional to the usual scale invariance 
at the critical point of a continuous phase transition, all critical exponents and 
multi-point correlation functions at the critical point can be obtained (for a review see 
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Cardy (1987)). They are connected to the representations of the underlying Virasoro 
algebra which is given by the following commutation relations: 

[L , ,  L , ]  = ( m  - n)L,+, +&cm(m2- 1)6 , , -~  (3) 

where n, m E 9. Here c is the so-called conformal anomaly. If a system is conformal 
invariant and corresponds to a certain central charge c s 1 of the Virasoro algebra 
(Belavin et a1 1984a, b, Friedan et a1 1984) and if we also require unitarity, then the 
anomalous dimensions A, and A, which are defined by the two-point correlation 
function 

(@, (Z , ,  F , ) @ , . ( Z Z ,  FJ)= S a a ' ( Z ,  -z2)-2AL"(zI - F 2 ) - 2 i Q  (4) 

where z = x + iy and 5 = x - iy with x, y = coordinates of the plane are rational numbers: 

( 5 )  
[(  m + 1)p - mq12- 1 

4 m ( m + l )  
( l s p s m - 1  and l s q s m )  A , ,  = 

and the conformal anomaly is parametrised by: 

6 
m ( m + l )  

c = l -  m = 3 , 4 , .  . . . 

The scale dimension x, of an operator @, is defined by: 
- 

x, = A ,  + A , .  ( 7 )  

The main problem is the identification of a certain physical model with a fixed central 
charge and the corresponding representations of the Virasoro algebra. 

Using the results of Cardy (1984a, b) and von Gehlen et al(1986) one can investigate 
the cubic model in the formulation of a finite quantum chain. von Gehlen and 
Rittenberg found conformal invariance and a second-order phase transition by measur- 
ing the finite-size scaling amplitudes for three different values of the coupling constant 
E (von Gehlen and Rittenberg 1986, 1987). They calculated a central charge of c = 1.25 
for all three points. Additionally they discovered a N = 1 supersymmetry for the point 
E = 0. This makes it possible to find again a quantisation of the anomalous dimensions. 

The supersymmetric generalisation of the Virasoro algebra which includes the 
additional odd generators G, obeys the following commutation relations (Eichenherr 
1985, Bershadsky et a1 1985, Friedan et a1 1985, Goddard et a1 1985): 

The superconformal anomaly E is connected to the usual conformal anomaly 

( 1 1 )  

The unitarity constraint gives the following formulae for the anomalous dimensions 
of the operators in the case of c's 1 (Friedan et a/  1985, Goddard et a1 1985): 

- 2  c = gc. 

[ p (  6 + 2) - q & ] 2 - -  4 
+ & [ l - ( - I ) p - 4 ]  

APA = 8 & ( 6 + 2 )  
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with 

6 = 2 , 3 , 4 ,  . . 8 ; = I -  
6(5+2) 

and 
l s p < 6  1 s q < 5 + 2 .  

The special case of the cubic model in the formulation of a quantum chain with 
the self-duality constraint corresponds for E = 0 to a superconformal anomaly of (von 
Gehlen and Rittenberg 1986,1987): 

( 1 5 )  5 E=' ( c= , ) .  

The parameter which characterises the representations is given by GI = 6 and the 
corresponding representations of the superconformal algebra belong to the Neveu- 
Schwarz sector (Neveu and Schwarz 1971) and are labelled by: 

( O ) N S =  (O, 3 ) V I R .  (16) 
From the pairs of the anomalous dimensions one derives the following scale dimensions 
for the neutral operators: 

x, = A, + A ,  

(L)  4 N S -  - (1 4 9 4  3 )  V I R  

- 

therefore: 

These scale dimensions give the critical exponents for the special kind of model 
constructed by Zamolodchikov and Fateev and also coincide with most of the known 
results from finite quantum chains. I shall derive the corresponding critical exponents 
in the Lagrange formulation of the cubic model to test the universality of the conjectured 
values. 

4. The numerical method 

In this section I shall briefly describe how the MCRG method has been implemented 
to achieve the results of the following sections. 

The combination of the RG ansatz (Ma 1976) and the MC method leads to the 
powerful MCRG method (for a review see Swendsen 1982). In the framework of this 
method, procedures are available to estimate the critical point as well as to calculate 
critical exponents. Because these procedures are limited to cases where the fixed point 
of the theory is not too far away from the starting point it has been very important 
that, based on an idea of Callen (1963), methods have been developed to calculate 
effective renormalised coupling constants (Swendsen 1984a, b, Gupta and Cordery 
1984). With the help of these kinds of calculations it is possible to follow the RG 
trajectories in the space of coupling constants. In this work I used the procedure of 
Swendsen (1984a, b) because of its better convergence properties (Shankar 1985). 
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One of the serious bottlenecks of the MCRG method is the fact that one has to use 
very large lattices in the MC simulation to be able to perform a reasonable number of 
block transformations. Here I have used a systematic enlargement procedure to avoid 
this problem (Badke 1987). Starting with a linear lattice size L one computes the 
effective renormalised coupling constants after a fixed number n of RG transformations. 
The actual linear lattice size is now L/6"  where 6 is the blocking factor. Then the 
lattice is enlarged to its original linear size L again and one performs a new simulation 
with the effective renormalised coupling constants. This procedure can be iterated to 
get as close as possible to the fixed point. In the method to calculate effective 
renormalised coupling constants there is a criterion which provides us with an estimate 
of the validity range of the iteration of the enlargement. The finite-size effects which 
finally limit the iteration turn out to be small (see § 6). 

All the simulations in this work are performed on two-dimensional square lattices 
with periodic boundary conditions (for a review of the MC simulation see Binder 
(1979, 1984)). The linear lattice size of the start lattices varies from 16 to 64. Before 
the measurements I did at least as many thermalisation sweeps as measurement sweeps. 
Two successive measurements are separated by fifteen intermediate sweeps. For the 
production of random numbers a shift-register-generator with a period of 2250 - 1 has 
been used. This kind of pseudo-random number generator proves to be more suitable 
than the usual congruential generators if a huge amount of random numbers is required. 

The RG transformations are performed with a blocking factor of 6 = 2 .  This gives 
exactly four possibilities to choose the origin of the block transformation. The origin 
is permuted randomly in the transformation to increase the quality of the statistics 
especially at higher blocking levels. In the determination of the block spins I applied 
the majority rule. If the variables in the block under consideration are equally 
distributed, one of them is chosen randomly to be the new block spin. 

5. The critical point 

This section is separated into two parts. In  the first I shall present the space of coupling 
constants which has been used and in the second the extracted result for the critical 
point is given. 

To be able to detect first-order phase transitions some authors claim that it is 
necessary to allow vacancies in the RG transformation (Nienhuis et a1 1983). Then 
the model under consideration transforms into the corresponding lattice-gas model. 
But the use of vacancies has not shown much success in the context of the MCRG 

approach (Rebbi and Swendsen 1980). In spite of the introduction of vacancies Rebbi 
and Swendsen were not able to see a clear difference between the second-order phase 
transition of the Potts model for q = 3 , 4  and the first-order transition for q = 6,7.  
Moreover a second-order phase transition can be driven to first order by choosing the 
coupling constant for the vacancy part in the Hamiltonian too large. 

Instead of the introduction of vacancies I shall allow a space of coupling constants 
with a greater symmetry. To take into account all possible phase transitions of the 
cubic model (see figure 1) the Hamiltonian of equation (2) is divided into the following 
parts: 

an Ising part 
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a Potts part 

a cubic part 

Si= (2S(Aa) - 1)(36(Ap) - 1). 
. f ~ ( i J )  

The function J ;  fixes the lattice variables which interact with each other. The different 
possible combinations are parametrised by I. In test measurements I found that the 
interactions which include more than two lattice variables give a contribution which 
cannot be separated from zero inside the error bars. Therefore I allowed only neighbour 
interactions. All interactions up to the fifth neighbours are included. The Hamiltonian 
which is used to analyse the renormalised configurations has the form: 

where I ,  m are the summation indices for the members and the parts of the interaction 
respectively. Table 2 gives a complete list of all coupling constants and their meaning. 

Table 2. Overview of the fifteen coupling constants which are included in the analysis of 
the renormalised configurations. The dependence on the part and on the members of the 
interaction is shown. 

Members of the 
interaction Part of the interaction S:  Si S: 

Nearest neighbours I = O  
Second neighbours I = 1  
Third neighbours I = 2  
Fourth neighbours 1 = 3  
Fifth neighbours 1 = 4  

The starting point for the calculation of the critical exponents will be the critical 
point at the boundary C1 = 0 in the phase diagram (see figure 1). This point is not 
analytically known and will now be determined with great precision. This is done by 
following the RG trajectories in the space of coupling constants. In detail: 

two values of C2 are chosen such that C i s  C: and a MC simulation is performed 
for each of them; 

effective renormalised coupling constants are calculated and the two corresponding 
RG trajectories are constructed; 

if the trajectories move apart as shown in figure 2 then the wanted critical point 
lies between the chosen coupling constants: 

A new choice of C: and C: and a repetition of the calculation leads to a better 
localisation of the critical point. 

This part of the calculation is performed on a 322 lattice with at least 5 x lo4 
measurements for each simulation. Because there are already some values available 
for the critical point (Kim er a1 1975, Badke er aI 1985a, b)  it is possible to choose 
the first pair of coupling constants quite close together. The coupling constants of all 
the simulations which have been performed are listed in table 3. 
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t 

MY other K,  

Figure 2. Schematic diagram for the renormalisation flows in the many-dimensional space 
of coupling constants under a typical renormalisation group transformation. The vertical 
axis represents the only non-zero coupling constant at the critical start point K f ,  and the 
horizontal axis represents all other coupling constants generated by the transformation. 
The instability of the fixed point to perturbations out of the critical surface is indicated 
by 0 and A (Swendsen 1982). 

Table 3. Selection of the start coupling constants which are used in the localisation of the 
critical point of the cubic model. The notation corresponds to the one of the Hamiltonian 
defined in equation (19) with the coupling constants of table 2. 

K i  = K i  = 0.36 
K i  = K i  = 0.364 

K :  = K :  = 0.366 

K :  = K :  = 0.367 
K ,  = K ,  = 0.3665 

KS = K :  = 0.368 
K :  = KS = 0.37 

i 

B 
0.20 L 

t # # , L l  . 8- 

0 0 05 0 10 
Coupling constant K, 

Figure 3. Renormalisation group trajectories in a projection of the fifteen-dimensional 
space of the effective renormalised coupling constants to a plane which is defined by K ,  
and K , .  The values of five different start combinations of the coupling constants for a 
32 x 32 lattice are shown. 
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Figure 3 shows the resulting RG trajectories for five selected start combinations in 
a projection of the fifteen-dimensional space of coupling constants to the two- 
dimensional plane which is defined by K ,  and K 2 .  The schematic behaviour of figure 
2 is reproduced. To show the relations of the RG trajectories among each other in 
greater detail figure 4 contains the same values again, but for the values of K 2  I always 
subtracted the value of the central trajectory of figure 3. Hence figure 4 shows the 
deviations from the central trajectory in figure 3 with respect to the coupling constant 
K 2 .  The other projections of the fifteen-dimensional space to two-dimensional planes 
show analogous results. 

I 

0 .05 0 .IO 

Figure 4. Renormalisation group trajectories in a projection of the fifteen-dimensional 
space of the effective renormalised coupling constants to a plane which is defined by K ,  
and K , .  The values of five different start combinations of the coupling constants for a 
32 x 32 lattice are shown. The values of K ,  indicate the deviation from the central trajectory 
of figure 3. 

-0 .03  L, 
0 

Coupling constant K, 

A close look at the numbers obtained gives another interesting observation. The 
relation K 2  = K 3  in the initial couplings is preserved in the effective renormalised 
coupling constants. In fact.al1 the numbers on the first and second blocking level 
support a relation K31+2 = K31+3 for 1 = 0, 1,2,3,4.  There is no splitting of the cubic 
interaction into the parts of the interaction of the Domany-Riedel model. This means 
also that at the fixed point which is approached by a RG transformation of this kind 
no isolated Ising part of the interaction will show up. 

By the localisation of table 3 the critical point of the cubic model of Kim er a1 is 
determined to be 

(21) 
The error of this value is about one magnitude smaller than that of results published 
so far. This value is chosen to be the starting point for the calculation of critical 
exponents. 

Ccritical - 
2 - (K2  = K3) = 0.3665 * 0.0005. 

6. Critical exponents 

This section describes the calculation of the critical exponents, the extrapolation to 
the fixed point and the comparison with known results and the predictions from 
conformal invariance. 
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The critical exponents are given by the eigenvalues of the transition matrix which 
is determined by a system of linear equations produced by the chain rule (Swendsen 
1982). I performed simulations for the following lattice sizes: 

start lattices of the size 

once enlarged lattices of the size 

twice enlarged lattices of the size 

6 4 x 6 4 , 3 2 ~ 3 2 , 1 6 ~ 1 6  

64 x 64,32 x 32,16 x 16 

32 x 32,16 x 16. 

The results which will follow are extracted from 1.2 x l o 5  measurements for the 
16 x 16 and the 32 x 32 lattice and from 0.7 x 10' measurements for the 64 x 64 lattice. 
The RG transformations are performed up to a 4 x 4 lattice. The transformation to a 
2 x 2 lattice has been dropped because of the strong fluctuations involved. The critical 
exponents which I found are listed in tables 4 and 5 .  The diagonalisation of the 
transition matrix is done in five steps. The inclusion of all interaction parts of a certain 
combination of interaction members forms one step. A permutation of the order of 
the interaction combinations leads to the conclusion that the order chosen represents 
the significance of the interaction combinations in the right way. The contribution 
from the fifth-neighbour interaction is not relevant in most cases. 

To study the finite-size effects one has to read tables 4 and 5 horizontally. If one 
calculates the differences of the values of the critical exponents in the rows of the 
tables one finds that the differences of the critical exponents which are caused by the 
finite size of the various lattices decrease with the number of operators included in 
the diagonalisation of the transition matrix. This behaviour allows the conclusion that 

Table 4. Critical exponents y, for different start lattice sizes with dependence on the 
blocking level n (Tea = K F + " / K F ' )  and on the rank of the transition matrix used in the 
analysis which is equal to the number of the included operators. 

Lattice size 
Blocking Rank 
level n of Top 6 4 x 6 4  32 x 32 1 6 x 1 6  

0 3 1.139 (5) 1.132 (4) 1.131 (9) 
6 1.179 (6) 1.174(6) 1.179 (9) 
9 1.180 (7) 1.175 (6) 1.181 (8)  

12 1.180(7) 1.176 (6) 1.181 (8) 
15 1.180 (7) 1.176 ( 7 )  1.180 (9) 

1 3 1.199 (4) 1.191 (5) 1.194 (7) 
6 1.225 (4) 1.221 (7) 1.230 (8) 
9 1.226 (4) 1.224 (8) 1.23 (1) 

12 1.226 (4) 1.224(9) 1.23 (1) 
15 1.226 (6) 1.225 (8) 1.23 (1) 

2 3 1.241 (5)  1.233 (8) 
6 1.262 ( 7 )  1.259 (8) 
9 1.265 (8) 1.26 (1) 

12 1.26 (1) 1.26 (1) 
15 1.26(1) 1.26(1) 

3 3 1.27 (1) 
6 1.29 (1) 
9 1.30 (2) 

12 1.30 (2) 
15 1.30 (2) 
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Table 5. Critical exponents y ,  for once enlarged lattices of different sizes with dependence 
on the blocking level n( Tao = K!,!'+''/K;') and on the rank of the transition matrix used 
in the analysis which is equal to the number of included operators. 

Lattice size 
Blocking Rank 
level n of Tap 6 4 x 6 4  32 x 32 1 6 x  16 

0 3 1.25 ( 1 )  1.245 (5) 1.239 (6) 
6 1.266 (7) 1.263 (5) 1.264 (6) 
9 1.266 (7) 1.262 (7) 1.265 (8) 

12 1.266 (8) 1.261 (7) 1.264(7) 
15 1.266 (9) 1.261 (8) 1.264(6) 
3 1.30(1) 1.301 ( 7 )  1.291 (4)  
6 1.321 (9) 1.317 (6) 1.313 (4)  
9 1.321 (9) 1.318 (6) 1.316 (7)  

12 1.32 (1) 1.317 (7) 1.32 (1) 
15 1.32(1) 1.316(8) 1.32(1) 

3 1.35 (2) 1.342 (9) 
6 1.36 (2) 1.35 (1) 
9 1.36 (2) 1.35 (1) 

12 1.36 (2) 1.35 (1) 
15 1.36 (3) 1.35 (1) 
3 1.38 (3) 
6 1.39 ( 7 )  
9 1.40 (7) 

12 1.41 (7) 
15 1.42 (6) 

the finite-size effects which have shown up are caused mainly by the limitation of the 
space of coupling constants. 

For a comparison of the values from the start lattice and the values from the 
enlarged lattice one has to take into account that the start lattice has been transformed 
twice before the effective renormalised coupling constants, which are the input for the 
enlarged lattice, are calculated. Therefore the third block in table 4 (the values for 
n = 2)  corresponds to the first block in table 5 (the values for n = 0) and so on. The 
differences of related values decrease with the number of operators included in the 
diagonalisation of the transition matrix. This is clear because these differences are 
caused by the different finite-size effects of the lattices. On the other hand the good 
agreement of the values from the start lattices with the values from the enlarged lattices 
gives us some confidence that all the relevant operators have been taken into consider- 
ation. If one had missed an important operator in the calculation of the effective 
renormalised coupling constants then there should be a systematic difference between 
the values from the initial and the enlarged lattice. 

The critical exponents are given by the eigenvalues of the transition matrix at the 
fixed point. Therefore I have to perform an extrapolation to the fixed point from the 
values obtained so far. This extrapolation corresponds to the limit n + o;, where the 
Hamiltonian H converges to H * .  The approach to the fixed-point Hamiltonian H* 
is controlled by the next-to-leading critical exponent W .  This suggests the following 
extrapolation formula (Pawley et a1 1984): 

y ,  = a ,  + a2 b-"". (22) 
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The constants a ,  and a ,  are determined by a fit. Such a behaviour is expected for 
large enough n. Figures 5 and 6 show the values of the critical exponents as a function 
of 2T". It is clear that the extrapolation has to be modified to take into account the 
enlargement in a suitable way: 

(23) y ,  = a ,  + a ,  b-["+(":=~",)]". 

Here I allow for the enlargement in the following way: the number of RG transformations 
performed before the actual enlargement is added to the actual number of block 
transformations. There 1 is the number of enlargements and nj is the number of RG 

transformations before the enlargement labelled by j .  
The result for the next-to-leading exponent w is w = 0.5 (see below). In figures 7 

and 8 the values for the leading critical exponents are plotted against 2-("+')',. This 
should produce a linear dependence. The straight lines show the best fit to the data 
where I dropped the values for n = 0, 1 ( n  should be large) to exclude uncontrollable 
systematic errors. The fits represent the data in a remarkable way and lead to the 

1.5 I " " I  

T 

P 

t 
1 . 2 1  

x 

i 

1.1:- 
0 0.5 1 .o 

2 -n  

Figure 5. Measured critical exponents y ,  with dependence on 2-" for the 64 x 64 lattice. 
The blocking level is indicated by n and the values are marked by x for the original lattice 
and by 0 for the enlarged lattice. 

1 5  I " " I  
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$ 1  
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2-" 

Figure 6. Analogous figure to figure 5 for the 32 x 32 lattice. 
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Figure 7. Measured critical exponents y, with dependence on 2-(n+2' ) '2  for the 64 x 64 
lattice. The blocking level is indicated by n and the values are marked by x for the original 
lattice and by 0 for the enlarged lattice. 
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Figure 8. Analogous figure to figure 7 for the 32 x 32 lattice. 

following final results for the critical exponents from the different lattices: 

64 x 64-lattice 

32 x 32-lattice 

y T ( a )  = 1.48*0.03 

y T ( a )  = 1.44k0.01 

16 x 16-lattice yj-(cO) = 1.40 * 0.03. 

The quoted error bars correspond to one standard deviation in the fit in which the 
values are weighted by their individual errors. 

For a first-order phase transition one would expect the leading exponent to be 
y ,  = 2. However, it has been found by other workers (Rebbi and Swendsen 1980 and 
references therein) that even if the phase transition is analytically known to be of first 
order, the value of the leading exponent is always about 10% smaller in MCRG studies. 
The numerical procedure applied here does not differ from the usual MCRG method 
in this point. But in spite of this systematic disadvantage of the MCRG method the 
pronounced difference between the obtained results and the first-order value leads to 
the conclusion that the cubic phase transition at C ,  = 0 is of second order. The values 
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of the leading exponent also suggest the following value for the critical exponent of 
the correlation length: 

The other thermal exponents can be obtained with the help of the scaling formulae. 
A successive diagonalisation of the transition matrix produces, besides the leading 

eigenvalues, also the next eigenvalues which give the higher exponents. Unfortunately 
the finite-size effects increase in the calculation of these values. I report the values in 
tables 6 and 7. Without repeating the interpretation of the measured values which is 
discussed in detail for the leading exponent, I give the result for the second thermal 
exponent w : 

o = y(T) = 0.5 kO.1. ( 2 5 )  

Note that the fits for the leading exponent do not change by more than a standard 
deviation if one chooses w = 0.4 or w = 0.6. 

In determining the third exponent the limited statistics increases the error bars 
further. From table 8 I extracted the result of 

(26) 

with quite a large error. But the new value obtained is clearly different from zero. The 
value of the fourth exponent is around -1. Because of the strong fluctuations no 
definite results can be given. 

y y )  = -0.5 f 0.2 

Table 6. Higher critical exponents w = y y ’  for different start lattice sizes with dependence 
on  the blocking level n( reo = K:”+”/K:’) and on the rank of the transition matrix used 
in the analysis which is equal to the number of included operators. 

Lattice size 
Blocking Rank 
level n of 64 x 64 32 x 32 1 6 x  16 

0 3 
6 
9 

12 
15 

1 3 
6 
9 

12 
15 

3 
6 
9 

12 
15 

3 3 
6 
9 

12 
15 

2 

0.681 (7) 
0.713 (6) 
0.703 (8) 
0.685 (4)  
0.692 (5)  
0.633 (5 )  
0.64 (3) 
0.64 (3) 
0.64 (4) 
0.63 (4)  
0.59 (4)  
0.60 (6)  
0.58 (5) 
0.57 (3)  
0.58 (5)  
0.57 (4 )  
0.58 (2) 
0.56 (5)  
0.56 (4)  
0.56 (6) 

0.725 (6)  
0.723 (7)  
0.716 (7)  
0.718 (6) 
0.713 (6)  
0.67 (3 )  
0.66 ( 5 )  
0.65 (5) 
0.66 (2)  
0.67 (3 1 
0.61 (5) 
0.61 (4)  
0.58 (5) 
0.59 (5) 
0.58 (7)  

0.694 (6)  
0.733 (8 )  
0.737 ( 8 )  
0.735 (7 )  
0.724 (8 )  
0.70 ( 4 )  
0.68 ( 5 )  
0.70 (3)  
0.70 (6)  
0.69 (4)  
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Table 7. Higher critical exponents w = y y )  for once enlarged lattices of different size with 
dependence on the blocking level n( TnB = K C + ” / K F ’ )  and on the rank of the transition 
matrix used in the analysis which is equal to the number of included operators. 

Lattice size 
Blocking Rank 
level n of Tns 6 4 x 6 4  32 x 32 16x 16 

0 3 
6 
9 

12 
15 
3 
6 
9 

12 
15 
3 
6 
9 

12 
15 
3 
6 
9 

12 
15 

0.58 (3) 
0.57 (4) 
0.57 (4) 
0.56 (2) 
0.56 (3) 
0.56 (5) 
0.56 (2)  
0.55 (3) 
0.56 (3) 
0.54 (3) 
0.51 (4) 
0.52 (4) 
0.52 (5) 
0.52 (4) 
0.52 (5) 
0.54 (4) 
0.53 (5) 
0.52 (5) 
0.51 (6) 
0.51 (6) 

0.56 (3) 
0.58 (4) 
0.57 (4) 
0.57 (3) 
0.56 (4) 
0.58 (3) 
0.56 (5) 
0.56 (5) 
0.56 (2) 
0.52 (3) 
0.50 (5) 
0.53 (5) 
0.53 (6) 
0.53 (5) 
0.50 (6) 

0.53 (6) 
0.59 (3) 
0.59 (3) 
0.60 (3) 
0.60 (4) 
0.50 (4) 
0.58 (5) 
0.58 (3) 
0.57 (6) 
0.57 (4) 

Table 8. Higher critical exponents y:“ for once enlarged lattices of different size with 
dependence on the blocking level n( TnP = K F + ” / K P ’ )  and on the rank of the transition 
matrix used in the analysis which is equal to the number of included operators. 

Lattice size 
Blocking Rank 
level n of TnP 64 x 64 32 x 32 16 x 16 

1 

0 3 -0.51 (5) -0.51 (7) -0.37 (7) 
6 -0.32 (7) -0.36 ( 7 )  -0.42 (8)  
9 -0.36 (6) -0.36 (6) -0.38 (8)  

12 -0.34 (6) -0.38 (8)  -0.41 (7) 
15 -0.37 (5) -0.50 (8)  -0.41 (9) 
3 -0.41 (6) -0.38 (7) -0.2 (1) 
6 -0.38 (6) -0.29 (8)  -0.4(1) 
9 -0.42 ( 7 )  -0.35 (8) -0.4 (1) 

12 -0.44 (7) -0.36 (9) -0.3 (1) 
15 -0.43 (9) -0.36 (7) -0.3 (1) 

2 3 -0.4(1) -0.2(1) 
6 -0.5 (1) -0.3 (2) 
9 -0.4 (2) -0.4 (2) 

15 -0.5 (2)  -0.4 (2) 
12 -0.5 (1) -0.5 (1) 
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After discussing the measurements in detail I now want to compare them with 
known results and predictions. From my MCRG study the following values for the first 
three thermal critical exponents of the cubic model are suggested: 

yY’=1.5 yY’= 0.5 y7’=-0.5 (27) 

and the phase transition is of second order. This conflicts with the results of Kim and 
Levy, Nienhuis et al and the Hamilton calculations of Igloi (1986). But there is 
agreement with our previous results and the ones of von Gehlen and Rittenberg. The 
value of the leading critical exponent is the same as in these investigations. 

These critical exponents correspond to the following scale dimensions: 

( 2 8 )  

An important observation is the fact that no marginal operator has been found. Because 
a scale dimension with a value greater than two has been identified the conjecture can 
be made that for the critical point under consideration no marginal operator exists at 
all. This means that the critical exponents are fixed in the Lagrange formulation of 
the model for the cubic transition. 

Now 1 shall interpret the obtained scale dimensions with the help of the theory of 
conformal invariance. Therefore the measured values are compared with the predicted 
anomalous dimensions given in Q 3. The first two scale dimensions are identified at once: 

x ( o ) - L  x(1) -3  
7 - 2  7 -2  T -2. 

(L  4 , 4  L)  V I R + X ~ = A ~ + & ~ = ~ + $ = $  

(a ,  a ) ~ l ~ + X 2 ’ A 2 + ~ 2 ’ a + a ’ ~ .  

The third representation (t, t),,, predicts a scale dimension of x,=3 which is supported 
by the fourth critical exponent which was found to be near -1. A clear identification 
is not possible due to the large uncertainty of the measurement. 

To find the place of the measured scale dimension of x=$  in the framework of the 
conformal invariance one has to remember that to each primary field with the scale 
dimension A there belongs a complete conformal tower (Belavin et a1 1984a, b). All 
the operators on the Nth level of this tower have a scale dimension of (A+N). Hence 
the scale dimension of the operators in the first level of the conformal tower of the 
leading neutral operator is: 

x : ” = ( l + f ) + ( l + f ) = ; .  (29) 

This coincides with the scale dimension derived from the third critical exponent. 

Table 9. Relation between the obtained numerical results for the critical exponents and 
the scale and anomalous dimensions and interpretation from the point of view of the 
corresponding operators. 

n v:“’ X i n l  T A, , , ,  i,,,, Interpretation 
~ ~~~ 

I 0 1.5 0.5 $ a Lowest level of the neutral operator with 

1 0.5 1.5 $ I Lowest level of the neutral operator with 

2 -0.5 2.5 l + $  I+: First level of the conformal tower of the 

anomalous dimension (a, a )  
anomalous dimension ( t ,  $) 

operator with anomalous dimension (a, a) 

3 
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All the critical exponents obtained in the MCRG study support the identification of 
the cubic model with a superconformal anomaly of c" = 2 ( c  = 2). The scale dimensions 
of the first and second neutral operator correspond to the leading and the next-to- 
leading thermal critical exponent. The third thermal critical exponent matches with 
the scale dimension of the first level of the conformal tower of the representation 
labelled by (a, $). The complete identification is presented in detail in table 9. 

7. Conclusions 

The aim of this paper was to test some new numerical features of the MCRG method 
on the one hand and to present some new results for the discrete cubic model on the 
other hand. 

From the numerical point of view I showed that it is possible to extend the accuracy 
of the measurement of the critical point by following the RG trajectories, although one 
has to say that this procedure requires a lot of computer work. The systematic approach 
to the fixed point by the calculation of effective renormalised coupling constants is 
successfully combined with an extrapolation scheme for the critical exponents. 

On the physical side the critical point of the cubic model in the special case of 
C ,  = 0 has been determined to be CTitica' = 0.3665 * 0.0005. In the RG transformation 
no splitting of the cubic interaction has been found. This allows the conclusion that 
the critical starting point is moved by the RG transformation only on the plane of the 
cubic model. 

The phase transition is of second order with a critical exponent of the correlation 
length of v = f. Between the higher critical exponents no marginal one is found. 
Therefore the critical exponents should not change on the cubic critical line. 

All the higher exponents can be interpreted in the framework of the theory of 
superconformal invariance. The identification of a special point in the space of the 
coupling constants with a superconformal anomaly P = 2 which has been suggested 
and found by von Gehlen and Rittenberg is supported by all the measured critical 
exponents. 

To clarify the properties of the cubic phase transition completely, additional points 
on the cubic critical line should be investigated and also magnetic exponents should 
be taken into consideration. Another interesting question is the behaviour of the critical 
exponents in the neighbourhood of the first-order critical point at C,  = C2. To identify 
conformal anomalies the number of calculated critical exponents has to be increased. 
This might be possible if the MCRG method can be improved by an analytical treatment 
of the finite-size effects in the enlargement procedure. 
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